| 4446 reflections                        | Atomic scattering factors  |
|-----------------------------------------|----------------------------|
| 343 parameters                          | from International Tables  |
| All H-atom parameters                   | for Crystallography (1992, |
| refined                                 | Vol. C, Tables 4.2.6.8 and |
| $w = 1/[\sigma^2(F_o^2) + (0.0622P)^2]$ | 6.1.1.4)                   |
| + 1.3800P]                              |                            |
| where $P = (F_0^2 + 2F_c^2)/3$          |                            |

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters  $(Å^2)$ 

$$U_{\text{eq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

|      | x            | у             | z            | $U_{eq}$     |
|------|--------------|---------------|--------------|--------------|
| Te 1 | 0.07929 (2)  | 0.592048 (11) | 0.899581 (9) | 0.01296 (8)  |
| Brl  | 0.10054 (3)  | 0.38493 (2)   | 0.92671 (2)  | 0.01919 (9)  |
| S1   | 0.19666 (7)  | 0.75449 (5)   | 0.93479 (4)  | 0.01799 (15) |
| S2   | 0.33051 (7)  | 0.57034 (5)   | 0.96452 (4)  | 0.01944 (15) |
| S3   | -0.08252(6)  | 0.72006 (5)   | 0.83570 (4)  | 0.01698 (14) |
| S4   | -0.14727 (7) | 0.51475 (5)   | 0.83710(4)   | 0.01939 (15) |
| 01   | 0.3343 (2)   | 0.5451 (2)    | 0.55487 (12) | 0.0255 (5)   |
| NI   | 0.4348 (2)   | 0.7378 (2)    | 1.00888 (15) | 0.0234 (5)   |
| N2   | -0.3118(2)   | 0.6481 (2)    | 0.77751 (15) | 0.0210 (5)   |
| Cl   | 0.3334(3)    | 0.6917 (2)    | 0.9738 (2)   | 0.0179 (5)   |
| C2   | 0.5496 (3)   | 0.6837 (2)    | 1.0442 (2)   | 0.0256 (6)   |
| C3   | 0.5234 (3)   | 0.6495 (2)    | 1.1297 (2)   | 0.0275 (6)   |
| C4   | 0.4412(4)    | 0.8424 (2)    | 1.0148 (2)   | 0.0347 (8)   |
| C5   | 0.3908 (5)   | 0.8795 (3)    | 1.0937 (3)   | 0.0472 (9)   |
| C6   | -0.1948 (3)  | 0.6289(2)     | 0.8122(2)    | 0.0175 (5)   |
| C7   | -0.4145 (3)  | 0.5724 (2)    | 0.7683 (2)   | 0.0290 (7)   |
| C8   | -0.3981(4)   | 0.5128(3)     | 0.6925 (2)   | 0.0373 (8)   |
| C9   | -0.3505 (3)  | 0.7450(2)     | 0.7515(2)    | 0.0250 (6)   |
| C10  | -0.4240(3)   | 0.7986(3)     | 0.8174 (2)   | 0.0329 (7)   |
| C11  | 0.1695(2)    | 0.5803(2)     | 0.7827(2)    | 0.0147 (5)   |
| C12  | 0.2157 (3)   | 0.6603 (2)    | 0.7418(2)    | 0.0160 (5)   |
| C13  | 0.2721 (3)   | 0.6526(2)     | 0.6652(2)    | 0.0178 (5)   |
| C14  | 0.2814 (3)   | 0.5628 (2)    | 0.6292(2)    | 0.0175 (5)   |
| C15  | 0.2350 (3)   | 0.4824 (2)    | 0.6701 (2)   | 0.0211 (6)   |
| C16  | 0.1798 (3)   | 0.4911 (2)    | 0.7464 (2)   | 0.0182 (5)   |
| C17  | 0.3909 (4)   | 0.6241 (2)    | 0.5123(2)    | 0.0297 (7)   |

## Table 2. Selected geometric parameters (Å, °)

|                            | - 0         | 4             | ,          |
|----------------------------|-------------|---------------|------------|
| Te1                        | 2.147 (3)   | S4C6          | 1.715 (3)  |
| Te1                        | 2.6184 (8)  | O1—C14        | 1.366 (3)  |
| Te1-S1                     | 2.6187 (8)  | O1—C17        | 1.433 (4)  |
| Te1                        | 2.6910 (9)  | N1-C1         | 1.323 (4)  |
| Te1-S2                     | 2.7211 (10) | NI-C4         | 1.470 (4)  |
| Te1-Br1                    | 2.9427 (7)  | NI—C2         | 1.482 (4)  |
| Tel···Brl <sup>i</sup>     | 3.4229 (10) | N2—C6         | 1.316 (4)  |
| S1-C1                      | 1.735 (3)   | N2—C9         | 1.473 (4)  |
| S2—C1                      | 1.707 (3)   | N2C7          | 1.480 (4)  |
| S3—C6                      | 1.737 (3)   |               |            |
| C11-Te1-S3                 | 87.67 (7)   | Te1-Br1···Te1 | 89.801 (9) |
| C11-Te1-S1                 | 94.06 (7)   | C1-S1-Tel     | 89.18 (10) |
| S3—Te1—S1                  | 76.27 (3)   | C1S2-Tel      | 86.41 (9)  |
| C11-Te1-S4                 | 89.51 (7)   | C6-S3-Te1     | 88.58 (10) |
| S3—Te1—S4                  | 67.44 (3)   | C6-S4-Te1     | 86.66 (9)  |
| S1-Te1-S4                  | 143.36(2)   | C14-01-C17    | 117.5 (2)  |
| C11-Te1-S2                 | 86.75 (7)   | C1-N1-C4      | 123.2 (3)  |
| S3Te1S2                    | 142.12 (2)  | C1-N1-C2      | 119.9 (2)  |
| S1-Te1-S2                  | 66.81 (2)   | C4—N1—C2      | 116.8 (2)  |
| S4—Te1—S2                  | 149.83 (2)  | C6—N2—C9      | 122.6 (2)  |
| C11-Te1-Br1                | 91.73 (7)   | C6-N2-C7      | 120.3 (3)  |
| S3Te1-Brl                  | 141.09 (2)  | C9N2C7        | 117.0(2)   |
| S1—Te1—Br1                 | 142.45 (2)  | N1-C1-S2      | 122.5 (2)  |
| S4—Te1—Br1                 | 73.65 (2)   | NICISI        | 120.1 (2)  |
| S2-Te1-Br1                 | 76.55 (2)   | S2-C1-S1      | 117.4 (2)  |
| CllTel···Brl <sup>i</sup>  | 173.05 (7)  | N2-C6-S4      | 122.1 (2)  |
| S3-Tel···Brl <sup>i</sup>  | 86.64 (2)   | N2—C6—S3      | 120.6 (2)  |
| S1-Te1···Brl <sup>i</sup>  | 88.46 (2)   | S4C6S3        | 117.3 (2)  |
| S4—Te1···Br1 <sup>i</sup>  | 84.63 (2)   | C16-C11-C12   | 119.2 (2)  |
| S2-Tel···Brl <sup>i</sup>  | 100.20 (3)  | C16C11Te1     | 119.4 (2)  |
| Brl-Tel···Brl <sup>i</sup> | 90.197 (9)  | C12-C11-Te1   | 121.5 (2)  |

© 1996 International Union of Crystallography Printed in Great Britain - all rights reserved

| C11-Tc1-Br1···Te1        | -173.32(7) | S3—Te1—C11—C16  | -126.1 (2) |
|--------------------------|------------|-----------------|------------|
| Te1-S2-C1-S1             | -4.08 (14) | S1—Te1—C11—C16  | 157.8 (2)  |
| Tet-SI-CI-S2             | 4.24 (15)  | S4Te1C11C16     | -58.7 (2)  |
| Tel-S4-C6-S3             | 1.48 (14)  | S2-Te1-C11-C16  | 91.4 (2)   |
| Te1-S3-C6-S4             | -1.52 (15) | Brl-Tel-Cll-Cl2 | -166.3 (2) |
| Commentation and and (1) | . 1 . 2 .  |                 |            |

Symmetry code: (i) -x, 1 - y, 2 - z.

Refinement was on  $F^2$  for all reflections except for 10 flagged by us for potential systematic errors.

Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993).

We wish to thank Mr Steffen Kudis, Department of Chemistry, University of Heidelberg, Germany, for assistance during the synthesis of the compound.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: AB1340). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

### References

- Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands. Haiduc, I., King, R. B. & Newton, M. G. (1994). Chem. Rev. 94, 301-326.
- Husebye, S. (1983). Proceedings of the Fourth International Conference on the Organic Chemistry of Selenium and Tellurium. University of Aston, England, edited by F. J. Berry & W. R. McWhinnie, pp. 298-378.
- Husebye, S., Kudis, S. & Lindeman, S. V. (1996a). Acta Cryst. C52, 424-429.
- Husebye, S., Kudis, S. & Lindeman, S. V. (1996b). Acta Cryst. C52, 429-432.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Acta Cryst, (1996). C52, 2024-2026

# **Rhoiptelenyl Acetate, a New Pentacyclic** Triterpenoid from *Ficus thunbergii*

T. KIYOTANI, J. KITAJIMA, Y. TANAKA AND H. AGETA\*

Showa College of Pharmaceutical Sciences, Machida, Tokyo 194, Japan

(Received 26 October 1995; accepted 2 February 1996)

### Abstract

Rhoiptelenol, (2), isolated from Ficus thunbergii Maxim. (Moraceae), has been reported as a triterpenoid component. The title compound, (1), whose molecular formula was shown by its high-resolution mass spectrum to be  $C_{32}H_{52}O_2$ , was obtained from (2) by acetylation with  $Ac_2O$  and pyridine. The structure of (1) was proved by NMR spectroscopy to be one of a rearranged ursane-type triterpenoid with five six-membered rings. We have described the conformation and geometry of (1) by an X-ray crystallographic analysis and molecularmechanics calculations.

### Comment

Ficus thunbergii Maxim. (Moraceae) has been used as a folk medicine against rheumatalgia and arthralgia and as a drug for lower-back pain in China and Japan. Rhoiptelenol. (2), was isolated from the fresh leaves and stems of the plant. The structure of the title compound (1), the acetate of (2), was first elucidated by means of mass spectroscopy and one-dimensional (<sup>1</sup>H, <sup>13</sup>C) and two-dimensional NMR techniques such as heteronuclear multiple-bond correlated (HMBC) spectroscopy and nuclear Overhauser enhancement spectroscopy (NOESY) (Kitajima, Arai & Tanaka, 1994). In this paper, the conformational and geometric studies of (1) are reported. The conformational interdependence of rings D and E has been characterized by molecular-mechanics force-field calculations (MM2; Allinger, 1977) for some canonical forms assumed by the D/E ring pair.



Rings A, C and D adopt chair forms while ring B, owing to a double bond at C5, assumes a slightly distorted half-chair shape as shown by the torsion angles (Table 2). Ring E which is *cis*-fused to ring D forms a distorted twist boat (Duax, Weeks & Rohrer, 1976).

The results of MM2 calculations show that the minimum steric energy changes according to the conformation of the D/E rings as follows: D and E both chair 87.260; D and E both boat 90.114; D chair, E boat 84.187; D boat, E chair 91.031 kcal mol<sup>-1</sup>. From this it follows that, in agreement with the X-ray analysis, (1) shows the most stable conformation when D is a chair and E is a boat. In contrast, glutin-5-en-3-one, (3), which is one of the migrated oleanane-type triterpenoids with a similar skeleton to (1) (five six-membered rings) and has a double bond in the same position as (1), adopts the twist-boat conformation of ring D fused to a boat-shaped ring E (Ohki, Tachibana, Kuroda, Takenaka & Sasada, 1981). These conformational differences between (1) and (3) can be attributed to the methyl groups (C29 and C30) which are situated at the different (vicinal versus geminal) positions of ring E.



Fig. 1. An ORTEPII (Johnson, 1976) drawing of (1) with all H atoms. Displacement ellipsoids are drawn at the 50% probability level.

### Experimental

The title compound was obtained from Rhoiptelenol by acetylation with  $Ac_2O$  and pyridine.

Crystal data

| $C_{32}H_{52}O_2$              |
|--------------------------------|
| $M_r = 468.76$                 |
| Monoclinic                     |
| P21                            |
| a = 12.032(1)Å                 |
| b = 7.742(1) Å                 |
| c = 15.148(1) Å                |
| $\beta = 90.92 (1)^{\circ}$    |
| $V = 1410.9 (2) \text{ Å}^3$   |
| Z = 2                          |
| $D_x = 1.10 \text{ Mg m}^{-3}$ |
| D <sub>m</sub> not measured    |

Mo  $K\alpha$  radiation  $\lambda = 0.71073$  Å Cell parameters from 25 reflections  $\theta = 10-18^{\circ}$   $\mu = 0.06 \text{ mm}^{-1}$  T = 296 KNeedle  $0.33 \times 0.23 \times 0.13 \text{ mm}$ Colourless

Data collection

1644 observed reflections Enraf-Nonius CAD-4  $[I > 1.0\sigma(I)]$ EXPRESS diffractometer  $R_{\rm int} = 0.020$  $\omega/2\theta$  scans  $\theta_{\rm max} = 26.3^{\circ}$ Absorption correction:  $h = -15 \rightarrow 0$ empirical,  $\psi$  scan (North,  $k = 0 \rightarrow 9$ Phillips & Mathews,  $l = -18 \rightarrow 18$ 1968) 3 standard reflections  $T_{\rm min} = 0.955, T_{\rm max} =$ frequency: 120 min 0.999 3224 measured reflections intensity decay: 0.9% 3074 independent reflections

### Refinement

| $(\Delta/\sigma)_{\rm max} = 0.02$                      |
|---------------------------------------------------------|
| $\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm A}^{-3}$ |
| $\Delta \rho_{\rm min}$ = -0.07 e A <sup>-3</sup>       |
| Extinction correction: none                             |
|                                                         |

R. .

| 1644 reflections<br>462 parameters                                      | Atomic scattering factors<br>from International Tables | C5—<br>C23—<br>C4— |
|-------------------------------------------------------------------------|--------------------------------------------------------|--------------------|
| Only H-atom U's refined<br>$w = 4F_o^2 / [\sigma^2(I) + (0.04F_o^2)^2]$ | for X-ray Crystallography (1974, Vol. IV)              | C4<br>C6<br>C5     |

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters  $(Å^2)$ 

$$B_{\rm eq} = (4/3) \sum_i \sum_j \beta_{ij} \mathbf{a}_i . \mathbf{a}_j.$$

|      | ~          | 7          | ~          | ~ 64     |
|------|------------|------------|------------|----------|
| 031  | 0.8399 (2) | 0.6530 (5) | 0.5209 (2) | 4.70 (8) |
| O311 | 0.8422 (3) | 0.4282 (6) | 0.4285 (2) | 6.5 (1)  |
| C1   | 0.7941 (5) | 0.5304 (8) | 0.6971 (3) | 5.8(1)   |
| C2   | 0.7347 (5) | 0.4685 (8) | 0.6160(3)  | 5.8(1)   |
| C3   | 0.7279 (4) | 0.6088 (7) | 0.5475 (3) | 4.4 (1)  |
| C4   | 0.6741 (4) | 0.7749 (7) | 0.5808 (3) | 4.2 (1)  |
| C5   | 0.7237 (3) | 0.8309(7)  | 0.6702 (3) | 3.5(1)   |
| C6   | 0.7398 (4) | 0.9945 (6) | 0.6908 (3) | 3.9(1)   |
| C7   | 0.7679 (4) | 1.0619 (7) | 0.7803 (3) | 4.4(1)   |
| C8   | 0.7488 (3) | 0.9243 (7) | 0.8518 (3) | 3.06 (9) |
| C9   | 0.8063 (4) | 0.754      | 0.8218(3)  | 3.4 (1)  |
| C10  | 0.7440 (4) | 0.6884 (7) | 0.7391 (3) | 4.0(1)   |
| C11  | 0.7981 (4) | 0.6170 (7) | 0.8960 (3) | 4.2 (1)  |
| C12  | 0.8148 (4) | 0.6822 (7) | 0.9894 (3) | 4.2 (1)  |
| C13  | 0.7390 (3) | 0.8333 (6) | 1.0126 (3) | 3.02 (9) |
| C14  | 0.7667 (3) | 0.9847 (6) | 0.9488 (3) | 3.2 (1)  |
| C15  | 0.6880 (4) | 1.1365 (7) | 0.9700 (3) | 4.6(1)   |
| C16  | 0.7023 (4) | 1.1970 (7) | 1.0655 (3) | 5.1 (1)  |
| C17  | 0.6982 (4) | 1.0610(7)  | 1.1372 (3) | 3.7 (1)  |
| C18  | 0.7564 (3) | 0.8901 (7) | 1.1113 (3) | 3.5 (1)  |
| C19  | 0.7371 (4) | 0.7390 (8) | 1.1783 (3) | 4.4 (1)  |
| C20  | 0.6462 (4) | 0.7677 (7) | 1.2467 (3) | 4.4 (1)  |
| C21  | 0.5471 (4) | 0.8653 (8) | 1.2072 (3) | 4.6(1)   |
| C22  | 0.5741 (4) | 1.0323 (7) | 1.1632(3)  | 4.7 (1)  |
| C23  | 0.5498 (4) | 0.7370 (9) | 0.5928 (3) | 6.5 (2)  |
| C24  | 0.6805 (4) | 0.9136 (8) | 0.5092 (3) | 5.7 (1)  |
| C25  | 0.9292 (4) | 0.7851 (9) | 0.8019 (3) | 5.8 (2)  |
| C26  | 0.8872 (4) | 1.0519 (8) | 0.9640 (3) | 4.9(1)   |
| C27  | 0.6185 (4) | 0.7703 (7) | 0.9984 (3) | 3.8 (1)  |
| C28  | 0.7590 (4) | 1.1392 (8) | 1.2200 (3) | 5.5 (1)  |
| C29  | 0.8497 (5) | 0.6859 (9) | 1.2231 (3) | 6.7 (2)  |
| C30  | 0.6098 (5) | 0.601 (1)  | 1.2867 (3) | 7.1 (2)  |
| C31  | 0.8873 (4) | 0.5455 (8) | 0.4619 (3) | 5.1(1)   |
| C32  | 1.0017 (4) | 0.617 (1)  | 0.4432 (3) | 8.7 (2)  |
|      |            |            | , <u>e</u> |          |

#### Table 2. Geometric parameters (Å, °)

| O31—C3     | 1.453 (5) | C11—C12     | 1.513 (6) |
|------------|-----------|-------------|-----------|
| O31-C31    | 1.354 (6) | C12-C13     | 1.528 (7) |
| O311-C31   | 1.168 (7) | C13-C14     | 1.559 (6) |
| C1-C2      | 1.491 (7) | C13-C18     | 1.570 (6) |
| C1-C10     | 1.509 (8) | C13—C27     | 1.542 (6) |
| C2—C3      | 1.504 (7) | C14—C15     | 1.547 (7) |
| C3—C4      | 1.530 (8) | C14—C26     | 1.554 (6) |
| C4C5       | 1.533 (6) | C15-C16     | 1.528 (7) |
| C4-C23     | 1.537 (7) | C16C17      | 1.515 (7) |
| C4-C24     | 1.529 (8) | C17—C18     | 1.551 (7) |
| C5—C6      | 1.318(7)  | C17—C22     | 1.566 (6) |
| C5C10      | 1.536(7)  | C17—C28     | 1.565 (7) |
| C6C7       | 1.488 (6) | C18—C19     | 1.569 (7) |
| C7—C8      | 1.539 (7) | C19—C20     | 1.535 (6) |
| C8C9       | 1.564 (5) | C19—C29     | 1.562 (7) |
| C8C14      | 1.553 (6) | C20-C21     | 1.525 (7) |
| C9-C10     | 1.535 (6) | C20—C30     | 1.497 (9) |
| C9-C11     | 1.547 (6) | C21—C22     | 1.493 (8) |
| C9—C25     | 1.534 (6) | C31—C32     | 1.516 (8) |
| C3-031-C31 | 116.2 (4) | C12-C13-C27 | 106.9 (4) |
| C2-C1-C10  | 114.8 (5) | C14—C13—C18 | 110.7 (4) |
| C1-C2-C3   | 110.9 (5) | C14—C13—C27 | 111.2 (3) |
| O31—C3—C2  | 108.8 (4) | C18—C13—C27 | 109.4 (3) |
| O31-C3-C4  | 107.1 (4) | C8-C14-C13  | 109.4 (4) |
| C2_C3_C4   | 113.4 (4) | C8-C14-C15  | 110.4 (3) |
| C3-C4-C5   | 111.6 (4) | C8C14C26    | 110.9 (3) |
| C3-C4-C23  | 107.3 (4) | C13-C14-C15 | 107.7 (3) |
| C3-C4-C24  | 109.2 (4) | C13-C14-C26 | 111.6 (3) |
| C5-C4-C23  | 108.4 (4) | C15-C14-C26 | 106.7 (4) |

| C5-C4-C24       | 113.9 (4) | C14-C15-C16     | 111.7 (4) |
|-----------------|-----------|-----------------|-----------|
| C23-C4-C24      | 106.1 (4) | C15-C16-C17     | 117.5 (4) |
| C4C5C6          | 122.3 (4) | C16-C17-C18     | 113.0 (4) |
| C4-C5-C10       | 116.9 (4) | C16-C17-C22     | 108.8 (4) |
| C6-C5-C10       | 120.5 (4) | C16-C17-C28     | 106.6 (4) |
| C5-C6-C7        | 125.7 (4) | C18—C17—C22     | 112.3 (4) |
| C6-C7-C8        | 111.4 (4) | C18-C17-C28     | 109.0 (4) |
| С7—С8—С9        | 108.0 (3) | C22-C17-C28     | 106.8 (4) |
| C7-C8-C14       | 115.9 (4) | C13-C18-C17     | 115.3 (3) |
| C9-C8-C14       | 118.3 (3) | C13-C18-C19     | 112.9 (4) |
| C8-C9-C10       | 107.6 (3) | C17—C18—C19     | 113.5 (3) |
| C8-C9-C11       | 109.4 (3) | C18-C19-C20     | 116.4 (4) |
| C8—C9—C25       | 110.8 (3) | C18-C19-C29     | 109.9 (4) |
| C10-C9-C11      | 109.4 (3) | C20-C19-C29     | 111.6 (4) |
| C10-C9-C25      | 110.6 (3) | C19C20C21       | 111.6 (4) |
| C11-C9-C25      | 109.0 (4) | C19-C20-C30     | 111.4 (5) |
| C1-C10-C5       | 110.8 (4) | C21-C20-C30     | 110.8 (4) |
| C1-C10-C9       | 114.7 (4) | C20-C21-C22     | 115.5 (4) |
| C5-C10-C9       | 112.9 (4) | C17—C22—C21     | 116.8 (4) |
| C9-C11-C12      | 116.3 (4) | O31-C31-O311    | 124.5 (4) |
| C11—C12—C13     | 113.5 (4) | O31—C31—C32     | 106.9 (5) |
| C12-C13-C14     | 107.3 (3) | O311—C31—C32    | 128.4 (5) |
| C12-C13-C18     | 111.2 (3) |                 |           |
| C10-C1-C2-C3    | 57.1 (6)  | C12-C13-C14-C8  | 58.4 (4)  |
| C1-C2-C3-C4     | -55.6 (6) | C13-C14-C8-C9   | -51.9 (4) |
| C2-C3-C4-C5     | 48.3 (5)  | C14-C8-C9-C11   | 40.8 (5)  |
| C3-C4-C5-C10    | -42.7 (5) | C13-C14-C15-C16 | 59.7 (5)  |
| C4C5C10C1       | 43.0 (5)  | C14-C15-C16-C17 | -50.8 (6) |
| C5-C10-C1-C2    | -49.9 (6) | C15-C16-C17-C18 | 38.7 (6)  |
| C5—C6—C7—C8     | -13.9 (6) | C16-C17-C18-C13 | -38.7 (5) |
| C6—C7—C8—C9     | 49.2 (4)  | C17-C18-C13-C14 | 51.0 (4)  |
| C7-C8-C9-C10    | -66.5 (4) | C18-C13-C14-C15 | 60.0 (4)  |
| C8-C9-C10-C5    | 47.5 (4)  | C17-C18-C19-C20 | 12.6 (5)  |
| C9-C10-C5-C6    | -12.5 (6) | C18-C19-C20-C21 | 37.2 (6)  |
| C10-C5-C6-C7    | -5.7 (7)  | C19-C20-C21-C22 | -53.7 (6) |
| C8-C9-C11-C12   | -40.0 (5) | C20-C21-C22-C17 | 17.9 (6)  |
| C9-C11-C12-C13  | 53.7 (5)  | C21—C22—C17—C18 | 32.9 (5)  |
| C11-C12-C13-C14 | -61.2(5)  | C22-C17-C18-C19 | -47.6 (5) |

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1992). Cell refinement: CAD-4 EXPRESS. Data reduction: MolEN (Fair, 1990). Program(s) used to solve structure: SIR88 (Burla et al., 1989). Program(s) used to refine structure: MolEN. Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: MolEN.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: KA1168). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

### References

- Allinger, N. L. (1977). J. Am. Chem. Soc. 99, 8127-8134.
- Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Polidori, G., Spagna, R. & Viterbo, D. (1989). J. Appl. Cryst. 22, 389-393.
- Duax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by N. L. Allinger & E. L. Eliel, pp. 271-383. New York: J. Wiley & Sons.
- Enraf-Nonius (1992). CAD-4 EXPRESS. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kitajima, J., Arai, M. & Tanaka, Y. (1994). Chem. Pharm. Bull. 42, 608-610.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Ohki, M., Tachibana, K., Kuroda, T., Takenaka, A. & Sasada, Y. (1981). Acta Cryst. B37, 2092-2094.